Strap-on robotic Titan Arm wins £30,000 Dyson award

News: a strap-on robotic arm that allows humans to lift heavy weights has won this year’s James Dyson Award for the most innovative student design product.

Titan Arm robotic exoskeleton

Titan Arm, an “upper body exoskeleton” developed by students at the University of Pennsylvania, won the £30,000 prize, which is given annually to the best design or engineering project by a student or recent graduate.

“Titan Arm is obviously an ingenious design, but the team’s use of modern, rapid – and relatively inexpensive – manufacturing techniques makes the project even more compelling,” said James Dyson, founder of electrical appliance brand Dyson and head of the James Dyson Foundation, which organises the James Dyson Award.

Titan Arm robotic exoskeleton

The arm allows the user to lift an additional 18 kilos and is designed to reduce the incidents of back injuries caused by heavy lifting, and allow people with injuries to rebuild and retrain their muscles.

Weighing around 9kg and worn like a backpack, the arm is powered by an on-board battery and uses cables to control a robotic elbow joint.

“The suit was developed for use in occupational lifting and healthcare,” the Titan Arm team explain. “Occupational lifters such as warehouse workers face increased risk of arm and back injuries because they repeatedly lift heavy items every day.”

Titan Arm robotic exoskeleton

The arm cost just $2,000 to develop, compared to more than $100,000 for other commercially available arms. The low cost was achieved by using accessible technologies such as 3D printing. The team plan to make the design available as an open-source file so others can improve and learn from it.

According to the Titan Arm team, upper-body injuries cause 7,000 years of lost productivity among American workers alone, costing $50 billion in healthcare costs.

Titan Arm robotic exoskeleton

“We all know someone who has suffered a back or arm injury and worked hard to recover, or live with permanent damage,” say the project team. “We are passionate about developing a tool that allows people to live normally, by both preventing injuries and lessening their effects.”

Titan Arm plans to use the cash prize to investigate electromyography, which would allow sensors in the arm to record electrical activity in the user’s muscles. This would allow the arm to interpret and amplify the user’s intentions, effectively making it a seamless extension of their body.

“This, if incorporated into Titan Arm, could allow people with severe injuries or suffering from paralysis to be abler to command their arms utilising the electrical activities in their muscles,” said the James Dyson Award. “Potentially giving them the ability to move their arms with the devices help, only using their brain.”

Last year’s James Dyson award was won by Royal College of Art graduate Dan Watson, for a sustainable fishing net that allows young fish to escape.

Here’s some text about Titan Arm:


Function

Titan is an upper-body exoskeleton that augments human strength and provides rich data feedback for users and doctors. The suit was developed for use in occupational lifting and healthcare. Occupational lifters such as warehouse workers face increased risk of arm and back injuries because they repeatedly lift heavy items every day. To prevent this, Titan augments the user’s arm strength by 18 kg to reduce fatigue, and braces the back to prevent poor lifting posture. Healthcare applications include physical therapy and mobility assistance. Titan can be used to help stroke and injury victims rebuild muscle and relearn fine motor control. It also provides detailed quantitative feedback to doctors which can be used to motivate their patients by tracking improvement over time. Finally, Titan can help people who suffer from permanent injuries or disabilities to live fully-empowered lives. Using an exoskeleton, both patients and the elderly will be able to regain their independence.

Inspiration

We all know someone who has suffered a back or arm injury and worked hard to recover, or live with permanent damage. As a team, we are passionate about developing a tool that allows people to live normally, by both preventing injuries and lessening their effects. We became even more motivated as we met therapists and patients working through these hardships. Each story showed how demoralizing upper body injuries can be. We hope that Titan will empower people to reclaim their lives. We are determined to make the field more accessible. Current exoskeletons are prohibitively expensive at more than $100,000. Using lean principles, we created Titan for less than $2,000. Low price points will help make Titan ubiquitous, aiding many more people. We will also release a version of Titan as an open-source development platform for researchers to experiment and collaborate on. Through this, we hope to enable a new era of research, resulting in innovative devices to improve lives.

Development

As a team of four mechanical engineering students, we developed Titan over eight months. We researched available exoskeletons and past academic projects, and decided to focus on the upper body, as most exoskeletons have aided the legs. We then completed technical and market research, talked to physical therapists, and met with patients. Using this information, we designed the mechanical, electrical, and control systems for the exoskeleton. Using CAD software coupled with techniques such as 3D printing and CNC machining, we produced several physical prototypes, leading us to Titan’s ergonomic form. We sourced and soldered the electrical components, striving for computational power and efficiency. Meanwhile we developed custom software to control the suit and transmit data in real-time to therapists. We continued talking to experts so that we could remain focused on their needs and our use cases. Finally we integrated the various systems to produce a functioning, wearable prototype.

The post Strap-on robotic Titan Arm
wins £30,000 Dyson award
appeared first on Dezeen.

3D-printed noses for accident victims “within a year”

3D-printed prostheses by Fripp Design and Research

News: 3D-printed nose and ear replacements for accident victims and people with facial disfigurements could be just a year away, according to a design firm working on a new generation of prosthetics (+ interview).

Patients could get a customised nose or ear printed within 48 hours, rather than the ten weeks it takes to make a hand-made prosthesis, Fripp Design & Research believes.

“It’s time saving and cost saving,” the company’s founder Tom Fripp told Dezeen. “Particularly, the time-saving is great for the patient. Traditionally to have one made you’re waiting for about ten weeks for a hand-made prosthesis. From start to finish we would scan, design and print within 48 hours.”

Fripp said that the technology could be ready this time next year, although getting the health services to embrace it was the biggest challenge. “I think to actually get anywhere from now to [having an] available service you’re talking about a year,” he said. “It requires some sort of acceptance into the health services. That’s the biggest barrier to it.”

The project is being exhibited as part of the 3D Printshow Hospital at the 3D Printshow in London. The exhibition, which explores how 3D printing is transforming healthcare, also features a bio-printer that could print human cells that could eliminate the need for animal testing of new drugs.

Fripp is also working on 3D-printed eyes, which could be produced for less than £100, compared to the current price of up to £4,000 for existing ocular prosthetics.

UK-based Fripp uses colour 3D printing to create soft-tissue prostheses that can be used by patients who are missing sections of their face. Each custom prosthesis printed with bio-compatible starch and silicone will match the wearer’s skin colour, and take less than two days to produce.

“We reproduce the colour, which is an exact match for the skin tone,” Fripp told Dezeen. “Following that, we have to colour code it for the printer because if you send any colour to any standard printer, you get a totally different colour.”

The current process is lengthy and costly and involves taking an impression of the area to create a mould for the prosthesis, which then has to be hand painted and modified during fitting.

To speed this up, Fripp Design & Research are collaborating with researchers at the University of Sheffield to map the shape of the patient’s trauma area and capture skin colour data in an instant using a setup of multiple digital cameras.

The prosthetics are then designed using previous scans of the patients, if available, by mapping features from the patients’ relatives or simply taking stock files of parts like noses or ears.

“[We use] a graphic clay that we can carve away and morph to the trauma area,” said Fripp, “so we make sure we have a dead accurate fit.”

The shape is then printed with the precise colour profile using a Z Corp Z510 colour 3D printer. This will cost around the same as a handmade prosthetic, but once created the file can be used to generate multiple copies for replacements at a significantly lower cost.

3D-printed prostheses by Fripp Design and Research

Fripp admits his products are less realistic than the current models: “They’re not as high quality as a hand-made one which really are beautiful, but a patient can have this as an interim until their handmade one is actually produced.”

He says they have tested and fitted a prosthetic for a patient but that the project is awaiting medical accreditation. He believes that the people who are going to benefit the most from this process will be “individuals currently in the developing world who go without because they don’t have the money to pay for a skilled technician to build one.”

Fripp’s company is also working with Manchester Metropolitan University to produce stock batches of prosthetic eyes that patients could buy for just £30, which they also hope to be selling in a year’s time.

He also claims that his company has developed the first machine to 3D-print entirely in silicon, which will help remove the white lines that form around the edge of the protheses due to the silicon reacting with the starch.

For our one-off 3D-printing magazine Print Shift, we reported that the technology is making strides towards medical applications such as printing organs. Scientists have also printed a bionic ear that can hear radio frequencies beyond a human’s normal range.

Here’s the full interview we conducted with Tom Fripp:


Dan Howarth: How you go about printing a nose or an ear?

Tom Fripp: It starts off with a data capture, half of it, because we deal with patients who are sometimes very nervous, sometimes very agitated, we have to use a structured light system, its an instant capture. People who are nervous tend to move around and fidget, lasers take too long to produce them because they don’t stay still. So we use a colour photogrammetry system. It’s an array of cameras mounted in pads that are calibrated to know where each pod is sat. They all take a picture at the same time then they can work out the physical geometry and at the same time capture the colour.

That gives us a mesh of the area of the trauma. What that doesn’t include obviously is what you’ve got to produce to replace any trauma area which might be due to surgery or through disease. The next thing to do is to create that geometry, we can use either stock prosthetics that we have as CAD files or we can image a friend or family member and we will adjust it all to fit in 3D CAD. Or we could use CCRMI data if thats available.

There’s quite a lot of ways that we could reproduce, lets say for example a nose to make sure that it fits. We use a voxel modelling system for modelling so it’s pixels rather than surfaces or solid modelling, it uses a graphic clay that we can carve away and morph to the trauma area. So we make sure we have a dead accurate fit. Then we have to make sure we get the colour right and we do this by taking a special photometer reading from the patient, all captured at the same time. Then we reproduce the colour which is an exact match for the skin tone. Following that, we have to colour code it for the printer because if you send any colour to any standard printer, you get a totally different colour. Then the final stage is that we produce it, we actually 3D print the full colour part in starch because it’s a stable, lightweight and porous material. The processing involves forcing medical grade silicon into the starch, that brings out its final qualities and then the prothesis is ready to go to the fitter to be adjusted and fitted to the patient.

Dan Howarth: What are the benefits compared to the current methods of creating protheses?

Tom Fripp: It’s time saving and cost saving. Particularly, the time saving is great for the patient. Traditionally to have one made you’re waiting for about ten weeks for a hand made prosthesis. From start to finish we would scan, design and print within 48 hours. They’re not as high quality as a hand-made one which really are beautiful, but a patient can have this as an interim until their handmade one is actually produced.

The other benefit is that it is much more cost effective. Although the first one would cost about the same amount which is between £1500 and £3000 depending on where you are in the country. Our first one would cost about the same because of the design side. For a repeat handmade one you’re talking up to a thousand pounds. For our one it comes down to about £130 because we’ve just got a CAD file, we just press print again.

Dan Howarth: Has this been tested and used on patients yet?

Tom Fripp: No, we have fitted it to a patient to see what their response is to it but its not actually been provided out there as prosthesis yet. The main reason is that it’s difficult for products to get into the medical profession. We are an industrial design company, we’re finding an awful lot of resistance to it because traditionally, things come from surgeons and clinicians having an idea and developing it rather than an external design company doing the same.

Dan Howarth: How long do you think it will be until it’s taken up?

Tom Fripp: I think to actually get anywhere from now to available service, you’re talking about a year. It requires some sort of acceptance into the health services. That’s the biggest barrier to it.

Dan Howarth: What sort of printers do you use to print out the files?

Tom Fripp: We use Z Corp Z510s deliberately because its a much more of an open system and we can play about with the materials before, the more recent ones are more cartridge based.

Dan Howarth: How does the prothesis then attach to the face?

Tom Fripp: There’s a variety of ways. A lot of patients will already have an implant placed on the good tissue. So any bone underneath the trauma area that can be used, they all have a steel implant drilled into the bone then we can capture the orientation and location in our scanning process. Then we would produce the prosthesis with magnets actually inside the prosthesis which would just clip onto the implants. But the prosthesis is also made with a fine fitted edge which means that you can place a medical grade adhesive around this edge that reactivates when you clean it. So you can actually take the prosthesis off overnight and allow air to get to any scar tissue, clean it and then clip it back onto the implant with the medical adhesive, with a little bit of make-up round the edge, it hides it.

Dan Howarth: Who is going to benefit the most from this?

Tom Fripp: The people who are going to benefit the most from this are the individuals currently in the developing world who go without because they don’t have the money to pay for a skilled technician to build one. There are areas where technicians aren’t actually available and they would have to wait for up to a year or so to visit a more developed country where you get academics going over and starting up small clinics. It happens very regularly but you still have to wait a long time, and in most cases some still can’t afford it.

Dan Howarth: Whats next after it gains medical accreditation, could you then develop it to create other body parts?

Tom Fripp: Yes, we are currently constrained on the physical parts that we can produce so for example limbs are a bit troublesome because of their physical size. The starch material is very delicate when it comes out of the printer so a large limb might collapse when you actually try to process it. We have looked at other parts, things like replacing breasts, they are particularly difficult to produce because of the physical size of the moulds required to make them, make them incredibly heavy to process. The process is straightforward but there’s quite a lot of work to do on the material side before we can produce something that large.

Dan Howarth:: Have you got anything else in the pipeline?

Tom Fripp: For the last year and a half to two years, we’ve also been developing ocular prosthetics, replacing eyes for people. You have a similar situation with the handmade prosthetics, we’ve developed a way of full colour 3D printing them without them costing about £3000-4000, we can produce them for less than £100.

Dan Howarth: That works in the same way as the noses?

Tom Fripp: Kind of. With the ocular prosthetics, we’re actually producing them as stock parts so they’re a standardised set of 3D printed parts. At the moment, all of the ocular prosthetics are handmade and very expensive to produce whereas ours are far quicker and far cheaper. So ours will be about £30 and we can make approximately 150 in three hours on our system.

Dan Howarth: Is this project in the same stage as the noses?

Tom Fripp: The product is more refined actually and the process is pretty much complete. The materials are standard, there’s no issue with the materials. We’re currently working with Manchester Metropolitan University on that project. We starting to scale up the process for production. There’s an awful lot of interest in the product particularly from India.

Dan Howarth: How long do you think until that might be put into mass production?

Tom Fripp: I would imagine within 12 months, we should be producing this product and its should be going out to India.

I should mention, one of the problems with the soft tissue prosthetics is that starch and silicon don’t get on too well. So when you over-stress the prosthesis, you get a small white grazing line on it, which isn’t too much of a problem if you’ve got a temporary prosthesis. The only way to get around that is to eliminate the starch from the process, so for the last six months or so, Fripp Design as a company has developed its own new type of 3D printer which actually prints directly in silicone, which is a complete game changer because nobody is actually able to print in silicone and we’ve discovered a way. We have a test rig up and running at the moment and we’re producing samples and filed the patent about two weeks ago.

The post 3D-printed noses for accident victims
“within a year”
appeared first on Dezeen.

Fire Up this Portable USB Charger for Your Off-the-Grid Power Needs

Flamestower-hero.jpg

At this point, any observant tech ethnographer knows that no one leaves their home without at least three things: wallet, key and cell phone. But lately, with the kind of short term battery life that smart phones have, I’ve noticed that more people are now adding another essential: some way to charge the phone. That might be a solar generator, an extra battery, a USB battery or even just a USB cord that you can plug into a power source when necessary.

But anyone who’s done fieldwork knows that finding a charge can be difficult. Sure, solar panels can help, but only if it’s sunny. Finding a way to keep your phone charged can mean the difference between having accurate GPS and connectivity in the field and returning to the days of paper notes and navigating by a compass. Which is why I was excited to learn about the FlameStower, which made the rounds a few weeks ago.

(more…)

University of Tokyo Team Creates Crazy Air/Sea/Land Quadrotor

muwa_1-1383610603818.jpg

This is officially a very bad-ass piece of technology, so we’re not sure why the development team has given us only a lousy 240p video, but what can you do. Koji Kawasaki, Moju Zhao, Kei Okada, and Masayuki Inaba from the University of Tokyo’s Department of Mechano-Informatics have created a sort of all-terrain foam-encircled quadrotor—imagine a self-propelled bicycle wheel that can fly and float—called the Multi-field Universal Wheel for Air-land Vehicle. Check this thing out:

Is there anything this thing can’t do? It can fly, skip along the water, roll around, hold specific angles in both flight and on the ground, and can “push” itself from a prone to a standing position.

muwa-1383612889941.jpg

There are a few reasons why these capabilities are relevant. First, it gives the quadrotor ways to move around without always having to expend energy flying. Second, by rolling, MUWA can squeeze through vertical gaps that it wouldn’t be able to while flying horizontally. And by getting MUWA to do things like rotate around a point on the ground while changing its angle (“tornado motion,” the researchers call it), a Kinect sensor on the robot can rapidly build up a complete 3D map of its surroundings.

The team is reportedly already working on the second generation of the device, which they’re trying to get to fly in a vertical attitude, and roll along the top of a liquid surface. This could be the ultimate surveillance/scanning/diagnostic/search-and-rescue drone ever.

Via IEEE Spectrum

(more…)

3D-printed human cells could “replace animal testing”

Animal testing

News: 3D-printed human cells could replace the need for animal testing of new drugs within five years, according to a pioneering bio-printing expert at the 3D Printshow in London, which opens today.

“It lends itself strongly to replace animal testing,” said Bioengineering PhD student Alan Faulkner-Jones of Heriot Watt University in Edinburgh. “If it gets to be as accurate as it should be, there would be no need to test on animals.”

Alan-Faulkner-Jones

Faulkner-Jones spoke to Dezeen while demonstrating the technology at the 3D Printshow in London this week as part of the 3D Printshow Hospital, a feature designed to showcase medical uses of 3D printing.

Using a bio-printer made from a hacked MakerBot printer, Faulkner-Jones is demonstrating how human stem cells can be successfully printed to create micro-tissues and micro-organs that can be used to test drugs.

bioprinter-hacked-from-makerbot

The technology could be ready to replace animal testing within five years, he believes. “The micro-tissues I think would be in the order of five years away hopefully, if we carry on at the pace we are now,” he said. “You could even test personalised drugs. So you’d be able to use cells of the person that is ill and create specific micro-tissues that would replicate their response, rather than the response of a generic human.

Image of animal testing courtesy of Shutterstock.

Here’s an edited transcript of the interview with Faulkner-Jones:


Marcus Fairs: Tell us who you are and what this project is all about.

Alan Faulkner-Jones: I’m Alan Faulkner Jones from Heriot Watt University in Edinburgh and we’re working on this bio-printer to produce small human micro-tissues for drug testing and drug production to replace animal testing.

Marcus Fairs: There’s been a lot of talk about 3D printing of human tissue. How much further forward does this project take the story?

Alan Faulkner-Jones: This is a major breakthrough in the fact that we did more testing than has ever been done before on the exact physiological response of the stem cells to the printing process. A lot of people have tried to do it before and have just checked whether or not they’re still alive at the end of the process, but we checked several markers to make sure that they were still physiologically the same cells at the end as they were when they went in. So we checked the potency markers to check the stem cells were still stem cells – because if they’re not stem cells then the technology isn’t worth anything, because you’ve changed them by printing. We want it to be as non invasive as possible. So on top of the fact that we’ve been able to prove that it’s over 90% viable, the cells are physiologically identical when they come out of the printing process.

Marcus Fairs: How much does this have in common with a standard 3D printer such as a MakerBot?

Alan Faulkner-Jones: All the iterations of our technology started out as something else. The first generation model was a CNC machine, which was too big. We couldn’t do anything with it. So we made a series of these – this is the third one – and you might notice that some of the plastic bits are from a MakerBot.

Marcus Fairs: It’s hacked?

Alan Faulkner-Jones: Yeah. We rebuilt it. It has a completely new control system and everything but the plastic bits and the rails came off a Replicator 1. But the major difference of course is the print head, which is a completely different design. It’s a pressurised cartridge system which is fed into a solenoid valve with a nozzle on it. By opening and closing the valve, we can produce different volumes of fluid. And by changing the pressure and the opening time we can control the different size of droplet we produce.

Marcus Fairs: So it’s a pneumatic process rather than an extrusion process?

Alan Faulkner-Jones: Yes. The fluid is under pressure.

Marcus Fairs: Is this specifically aimed at the drug testing market?

Alan Faulkner-Jones: I’m aiming it at testing. My supervisor and some of the researchers aren’t exactly geared towards it but it lends itself strongly to replace animal testing.

Marcus Fairs: Tell us how that would work, and how soon it could be ready.

Alan Faulkner-Jones: At the moment unfortunately a lot of drugs have to be tested on animals for regulations. You have to prove that it works, which unfortunately leads to the drugs being tailored to the specific animals they’re tested on, which won’t give you an accurate response for a human. Which is why a lot of money is spent on drugs that don’t make it to market.

Marcus Fairs: They work for rabbits but they don’t work for people?

Alan Faulkner-Jones: Exactly. So they fail at the last hurdle basically. You’ve spent so long testing them on animals that they don’t work on humans. Or if they do they produce adverse side effects. So the idea is that we would produce micro-tissues of specific organs in the body and then they would have the same reaction to the physiological environment – drugs, everything – as the entire organ would do, but on a much smaller scale.

So you can apply the drug to the micro-tissue and it would give off the same result. So if it killed it or inflamed it, you’d get that response. And you could then connect a series of these micro-organs together into a system that is becoming known as “human on a chip” – so you can find the entire body’s reaction to a new drug or chemical.

Marcus Fairs: Tell us more about the human on a chip. Is that a digital chip or a biological one?

Alan Faulkner-Jones: With human on a chip you have areas on this micro-fluidic chip with a synthetic blood supply and nutrients, and introduce the drug inside each chamber, where you have micro organs that represent human organs. So you have one for the liver, the kidney, the lungs, the heart, brain tissue.

Marcus Fairs: So it’s like a chip of living tissue?

Alan Faulkner-Jones: Yes. It wold emulate the whole body’s response.

Marcus Fairs: And this could eliminate the need for animal testing?

Alan Faulkner-Jones: I hope so yes. If it gets to be as accurate as it should be, there would be no need to test on animals. You could even test personalised drugs. So you’d be able to use cells of the person that is ill and create specific micro-tissues that would replicate their response, rather than the response of a generic human.

Marcus Fairs: How far away is that?

Alan Faulkner-Jones: The micro-tissues I think would be in the order of five years away hopefully, if we carry on at the pace we are now. It’s just a matter of sorting out cell ratios at this point. We can produce cells, we just need to make sure we can get the physiological response. There are certain structures in the organs that are quite difficult to reproduce at a small level.

The post 3D-printed human cells could
“replace animal testing”
appeared first on Dezeen.

Rock Paper Scissors

Les allemands de weAREmedienkuenstler ont eu l’idée de programmer deux ordinateurs jouant à un pierre, feuille, ciseaux. Chaque ordinateur choisit une des trois possibilités, et réagit face au choix de l’autre, permettant ainsi de compter les points. Une idée étonnante à découvrir en vidéo dans la suite.

Rock Paper Scissors5
Rock Paper Scissors4z
Rock Paper Scissors4
Rock Paper Scissors3
Rock Paper Scissors6

Cool Hunting Video: Empire State Light Show: World famous lighting designer Marc Brickman on his incredible installation at NYC’s iconic building

Cool Hunting Video: Empire State Light Show


On the 86th floor of New York City’s Empire State Building, we had the chance to talk with the man behind the structure’s elaborate light shows—world-renowned lighting designer, Marc Brickman. His most recent installation unveiled…

Continue Reading…

What’s the Deal with Li-Fi (Light-Bulb-Based Wireless Hotspots)?

0lifupdate-001.jpg

These days, Wi-Fi networks are increasingly overloaded and slow, and there’s definitely a need for novel solutions for creating wireless connections. You may remember that we looked at “Li-fi,” the term coined by German physicist Harald Haas during his TED talk where he outlined the phenomenon of using light bulbs as wireless routers. But that was two years ago–did it die on the vine?

Li-fi development, we’re happy to report, is still alive and well. We looked into it and discovered that recently scientists at Fudan University in Shanghai have been pushing the technology forward. They’ve proven that they can transmit data via light instead of via the typical radio waves, and they’ve even been able to increase the connection speed to ten times faster than traditional Wi-Fi.

Right now, due to electromagnetic waves in dense cities, there is a limit to the amount of data that can be delivered. But light runs on a much higher frequency than radio. Added plus: You don’t need a license to set up a light bulb, as you do when you set up a Wi-fi network over radio waves. What you do need is a way to make the light flicker—so that it can form a signal.

In the lab, the researchers send data to an LED light bulb, just like any LED light you’ve seen before, and then the light is flicked on/off very rapidly. (In our earlier post we’d wondered if the flickering would give you a headache, but it seems that ultimately, our eyes would only see a steady stream of light. To put that in context, the bulbs you have in your typical office space flicker about 20,000 times per second; the Fudan U. researchers have their bulbs flickering billions of times per second.) A receiver on the computer end (e.g., a camera that detects the flickering light) then translates the flicker pattern into data.

0lifupdate-002.jpg

(more…)

Nexus All The Way

Here is a delightful ideation of of Google Glasses combined with concept Google Nexus TV. The bundle is perceived with a full-screen remote control and looks very sexy! Love the strong visual cues, detailing and design, what do you think?

Designer: Phone Designer [ Jonas Dähnert ]


Yanko Design
Timeless Designs – Explore wonderful concepts from around the world!
Shop CKIE – We are more than just concepts. See what’s hot at the CKIE store by Yanko Design!
(Nexus All The Way was originally posted on Yanko Design)

No related posts.


    



2015 Chak Motors Molot

La marque de motos basée à St Petersburg Chak Motors est spécialisée dans la création de modèles de luxe et limités à un petit nombre d’exemplaires. Modifiant une 2013 Honda CBR 1000RR ABS, cette Molot propose un design réussi et agressif dont la sortie est prévue pour fin 2014. A découvrir dans la suite.

2015 Chak Motors Molot6
2015 Chak Motors Molot5
2015 Chak Motors Molot4
2015 Chak Motors Molot3
2015 Chak Motors Molot7
2015 Chak Motors Molot2
2015 Chak Motors Molot
2015 Chak Motors Molot8