Building a Bottle Brick at GlassLab, A Case Study by Tim Dubitsky
Posted in: UncategorizedGlassLab provides designers with rare access to explore concepts in glass. In public “design performances” or private workshops, designers and glassmakers collaborate, rapidly prototyping design concepts and using the immediacy of hot glass as a catalyst for innovation. Using a mobile hot glass studio, GlassLab sessions have taken place in public design venues like Design Miami/Art Basel Miami and Cooper-Hewitt National Design Museum, offering audiences a live, authentic glimpse of the design and glassmaking processes, while allowing designers to explore the material of glass in a way that few have access to. – Corning Museum of Glass
I live in North Kohala on the Big Island of Hawai’i. I grow food, I chase sunsets and I brew. When it came time to source bottles for my first batch of ginger beer, I went to the transfer station to intercept a few before they were hauled off for recycling. While chatting with the manager, I learned that shipping costs prohibit the bottles from leaving the island, and instead they’re pulverized and sold as raw material. (There’s rumor of a man laying a shiny road on the island, will keep you posted…) Hearing this while living in a community practicing permaculture and preservation, I was inspired to dust off an old idea.
In 2008 I had a moment of gin-spiration. I was at a gathering watching a group of architect friends attempt to redeem the collegiate party pastime of beer can stacking and I began thinking how much more interesting the game would be if the cans interlocked, if they were more like Legos. Shortly after, I came across the (loose) statistic that “every month [in America], we throw out enough glass bottles and jars to fill up a giant skyscraper.” So when I was invited to participate in GlassLab at the Corning Museum of Glass (CMOG) I accepted without hesitation, eager to bring my bottle brick to life and build that skyscraper rather than fill it. The following is my process from concept to prototype.
Like many before, this process began on a napkin. The first study was a simple cartoon of a bottle and a Lego on a date. I thought if all goes well, this design will work itself out.
Imagined first date between a bottle and a toy.
It turned out that more action was required on my part, so in preparation for my GlassLab sessions I spoke with gaffer Eric Meek at CMOG. To best execute this design, we would need a mold. Our best material options for glassmaking molds included wood, plaster and graphite. I decided on a wood mold as this current design is conceptual and would deserve a more adept design before committing to the more expensive—but lasting—graphite mold. The ultimate goal for the bottle is to become ubiquitous and a readily upcyclable, viable building material, but at this stage I was interested in starting a conversation to garner the resources in order to move to the next step.
We decided on a three-part hardwood mold. Eric estimated the wood could withstand the 2,100 degree glass for roughly 6-8 castings. To produce the mold I turned to Tietz-Baccon, a design and digital fabrication studio in Long Island City, NY. After the initial conversation with T-B, I elaborated on the first-date sketch, snapped it with my phone and emailed it across the Pacific. Between a phone call, a quick sketch and a snapshot, this idea was coming to life.
Follow-up sketch sent to Tietz-Baccon
Mold sketch, CMOG
A mockup made from water bottles. Could plastic be an option for implementation?
A few days later I received the CAD renderings and technical drawings from Tietz-Baccon. We increased the scale of the bottle so that it would be easier to work with by hand out of a mold.
Technical drawing, Tietz-Baccon
Rendering 1, Tietz-Baccon
Rendering 2, Tietz-Baccon. Just like my napkin sketch. I don’t see any difference…
We decided on a dense cherrywood for the mold because of its ability to withstand the heat of the molten glass without burning away too quickly. The job was cued up, and by the time I would arrive in New York City a few days later, it was complete. The CNC milling required 8 hours, with an additional 4 hours of finishing and construction. When I arrived to the T-B studio, I was greeted with a thing of true beauty:
The sacrificial lamb, closed.
Mold, open.
Post a Comment